컨텐츠상세보기

처음 배우는 딥러닝 수학
처음 배우는 딥러닝 수학
  • 평점평점점평가없음
  • 저자<와쿠이 요시유키>,<와쿠이 사다미> 공저/<박광수> 역
  • 출판사한빛미디어
  • 출판일2018-02-09
  • 등록일2021-03-16
보유 1, 대출 0, 예약 0, 누적대출 0, 누적예약 0

책소개

고등학교 수학으로 살펴보는 딥러닝 개념

딥러닝 모델의 바탕은 수학입니다. 따라서 수학 전공자 수준만큼은 아니더라도 딥러닝에서 사용하는 수학 이론의 큰 그림을 이해해야 실제 딥러닝 모델을 제대로 설계해서 개발할 수 있습니다.

이 책은 신경망을 구현하는 데 사용하는 수학 이론을 그림 중심으로 설명합니다. 또한 엑셀을 이용해 수학 이론의 구현 결과를 살펴볼 수 있습니다. 딥러닝 관련 라이브러리를 사용해본 경험은 있지만, 수학에 바탕을 둔 딥러닝 모델 구현을 어려워한다면 이 책을 읽고 원하는 딥러닝 모델을 구현하는 토대를 쌓기 바랍니다.

저자소개

1950년 도쿄에서 태어났습니다. 도쿄교육대학(현 쓰쿠바대학) 수학과를 졸업하고 치바현립고등학교에서 학생들을 가르쳤습니다. 현재는 수학이나 과학 관련 서적을 집필하는 작가로 활동 중입니다. 한국에 소개된 책으로는 『법칙, 원리, 공식을 쉽게 정리한 수학 사전』(그린북, 2017), 『그림으로 설명하는 개념 쏙쏙 통계학 개정판』(성안당, 2017), 『과학 잡학사전』(어젠다, 2013) 등이 있습니다.

목차

Chapter 1 신경망의 동작 방식
__01 신경망과 딥러닝
__02 뉴런 활동의 수학적 표현
__03 뉴런의 활동을 일반화하는 활성화 함수
__04 신경망
__05 악마가 설명하는 신경망 구조
__06 악마의 활동과 신경망의 연관 관계
__07 스스로 학습하는 신경망

Chapter 2 신경망을 위한 수학 기초
__01 신경망의 필수 함수
__02 신경망의 이해를 돕는 수열과 점화식
__03 신경망에서 많이 사용하는 시그마 기호
__04 신경망의 이해를 돕는 벡터
__05 신경망의 이해를 돕는 행렬
__06 신경망을 위한 미분의 기본
__07 신경망을 위한 편미분의 기본
__08 연쇄법칙
__09 다변수 함수의 근사식
__10 경사하강법의 의미와 식
__11 엑셀로 경사하강법 살펴보기
__12 최적화 문제 및 회귀분석

Chapter 3 신경망 최적화
__01 신경망의 파라미터와 변수
__02 신경망 변수의 관계식
__03 학습 데이터와 정답 데이터
__04 신경망의 비용함수
__05 엑셀로 신경망의 가중치와 편향 결정하기

Chapter 4 신경망과 오차역전파법
__01 경사하강법 다시 살펴보기
__02 유닛의 오차
__03 신경망과 오차역전파법
__04 엑셀로 신경망의 오차역전파법 체험하기

Chapter 5 딥러닝과 합성곱 신경망
__01 악마가 설명하는 합성곱 신경망의 구조
__02 소악마의 활동과 합성곱 신경망의 연관 관계
__03 합성곱 신경망 변수의 관계식
__04 엑셀로 합성곱 신경망 살펴보기
__05 합성곱 신경망과 오차역전파법
__06 엑셀로 합성곱 신경망의 오차역전파법 살펴보기

Appendix 부록
__A 학습 데이터 1
__B 학습 데이터 2
__C 패턴 유사도를 수식으로 표현하기

한줄 서평